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Support vector machines (SVM) were trained to predict cyclooxygenase 2 (COX-2) and thrombin
inhibitors. The classifiers were obtained using sets of known COX-2 and thrombin inhibitors
as “positive examples” and a large collection of screening compounds as “negative examples”.
Molecules were encoded by topological pharmacophore-point triangles. In retrospective virtual
screening, 50-90% of the known active compounds were listed within the first 0.1% of the
ranked database. To check the validity of the constructed classifiers, we developed a method
for feature extraction and visualization using SVM. As a result, potential pharmacophore points
were weighted according to their importance for COX-2 and thrombin inhibition. Known
thrombin and COX-2 pharmacophore points were correctly recognized by the machine learning
system. In a prospective virtual screening study, several potential COX-2 inhibitors were
predicted and tested in a cellular activity assay. A benzimidazole derivative exhibited significant
inhibitory activity with an IC50 of 0.2 µM, which is better than Celecoxib in our assay. It was
demonstrated that the SVM machine-learning method can be used in virtual screening and be
analyzed in a human-interpretable way that results in a set of rules for designing novel
molecules.

Introduction

A pharmacophore is defined as “the ensemble of steric
and electronic features that is necessary to ensure the
optimal supramolecular interactions with a specific
biological target structure and to trigger (or to block)
its biological response” (IUPAC Glossary of Terms Used
in Medicinal Chemistry, URL: http://www.chem.qmu-
l.ac.uk/iupac/medchem/). Pharmacophoric descriptors
that are used to define a pharmacophore can be used
in different ways in drug design programs: (i) as a query
tool in virtual screening to identify potential new
compounds from databases of “drug-like” molecules with
patentable structures that are different from those
already discovered; (ii) to predict the activities of a set
of new compounds yet to be synthesized; (iii) to help
understand the possible mechanism of action; or (iv) to
extract potential privileged (sub)structures.1-3 Cur-
rently several algorithms are known that construct
pharmacophore models from a set of available active
compounds employing potential pharmacophore points
(PPP), e.g., CATALYST4 and DISCO,5 ligand-receptor
interaction patterns derived from protein-structure,6 or
field-based approaches.7,8 The quality of the extracted
models usually relies on the quality of the initial three-
dimensional (3D) ligand alignment. This influence of the

initial alignment on the quality of the resulting phar-
macophore model can be modulated by considering
multiple ligand conformations (ensembles) and applying
“fuzzy” pharmacophore point definitions.6,9,10 Here we
present a complementary method for PPP identification
that is grounded on a topological three-point pharma-
cophore (3PP) concept.11 The motivation was to avoid a
strict dependency of the pharmacophore model on a 3D
alignment. Each molecule was represented as a binary
vector, where each feature corresponds to the presence
or absence of a particular pharmacophore triangle.11

These alignment-free feature vectors were used for
construction of a classifier predicting molecules to have
certain biological activity. Subsequent visualization of
features with respect to their contribution to the model
allowed us to find patterns of potential pharmacophore
points. For the present study, Support vector machines
(SVM) were used for both classification and feature
extraction.12-17 Molecules were represented by finger-
prints that contained ∼104 potential 3PP triangles, and
we expected SVM to efficiently discriminate between
important and unimportant features. This approach is
motivated by the fact that SVM classifiers have been
shown to be well-suited for first-pass virtual screening
purposes.18-20 Two test cases were selected to evaluate
our new approach, namely the development of SVM
classifiers for cyclooxygenase 2 (COX-2) and thrombin
(Factor IIa) inhibitors.

Methods
Data Sets and Feature Fingerprint. Two subsets

of the COBRA (version 2.11) collection of pharmacologi-
cally active reference compounds were used for SVM
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training:21 188 thrombin and 94 COX-2 inhibitors. We
used these subsets as a reference for ranking ∼2.7
million substances that are commercially available from
different vendors. A similar screening library has been
compiled by Irwin and Shoichet recently.22 Each com-
pound was represented by a 3PP fingerprint using the
fingerprint generator available from the software suite
MOE (version 2004.05; MOE, Molecular Operating
Environment, Chemical Computing Group Inc., Mont-
real, Canada; URL: www.chemcomp.com). The indi-
vidual 3PP feature is a triangle. We considered all
possible triangles with their vertexes located at the atom
centers of a molecule. Presence or absence of a certain
triangle defines the “on” (i.e., bit is set) or “off” state of
the corresponding bit in the fingerprint. We distin-
guished triangles by the type of atom at vertexes and
by the length of their edges. The vertex can be either
donor (D), acceptor (A), polar (P), donor and planar (D)),
acceptor and planar (A)), hydrophobic (H), and hydro-
phobic and planar (H)) as defined by the rule-based
atom-typer implemented in MOE which follows the
PATTY atom-type definition.23 Lengths of the edges
were calculated along the molecular graph, so no
estimation of the 3D structure of molecule was per-
formed. The graph distance was defined as the number
of bonds in the shortest path between the atoms in the
chemical graph. Distances were binned into six catego-
ries {1,2,3,4,5-9,10-} yielding higher resolution for
smaller distances and less for larger distances. Dis-
tances greater than 10 bonds were pooled. As a result,
a fingerprint is the set of all tuples of the form (a1, a2,
a3, d1, d2, d3), where a1, a2, and a3 are atom-types, and
d1, d2, and d3 are graph distances between the respective
atoms.

Support Vector Machine. The SVM constructs a
surface in the n-dimensional space that separates active
from inactive compounds.24 Here, n is the number of
3PP that were used to describe a molecule. Prior to
construction of the separating surface the data is
mapped to a very high-dimensional space, where the
separating surface is found in a form of a hyperplane.
This hyperplane is then mapped backed to the original
space.25 The result of SVM training can be given by the
following equation (eq 1).

Here, f(x) gives the prediction of the molecule to
belong to the class “active”, i.e., the greater the value
of f the higher is the predicted probability to be active.
x and y are molecular fingerprint vectors, xsv are
support vectors, i.e., molecular fingerprints that define
the exact shape of the separating hyperplane. The
kernel function K defines the complexity of the surface
that will be constructed. Different standard kernels can
be used during SVM training.24 The influence of a
particular Kernel on classification accuracy remains a
matter of debate. Our own previous virtual screening
studies using SVM indicated that the choice of a
particular Kernel is of limited importance for the overall
virtual screening process.15,19 Other studies come to
different conclusions.16 In the present work we used a
fifth-order polynomial for all SVM models. This Kernel

represents a compromise between complexity and com-
putational efficiency. For the purpose of this study,
namely to provide proof-of-principle for the feature
selection approach, the outcome of SVM training was
not compared for different Kernel functions. Kernel
parameter s was optimized to achieve better ranking of
compounds as described.18,19

For database screening, we sorted all available com-
pounds with respect to predicted f. The sum in eq 1 is
over support vectors, they are part of the training set.
Note that the ranking function depends only on the
support vectors. Parameters Ri and b were determined
during SVM training as described.26 For constructing
SVM models we used the SVM-light package.27

Training of the SVM, “Active Learning” Opti-
mization, and Compound Selection. During SVM
training we tried to optimize the percentage of active
compounds found within the top 0.1% of the ranked
screening database. To achieve this, we used a standard
4-fold cross-validation procedure:28 The reference set of
active compounds was divided into four equal parts.
Each part in turn was mixed with the ∼2.7 million
screening compounds. The remainder of the set of
known actives and the set of molecules to be virtually
screened were assigned “class” (known inhibitors) and
“nonclass” (all other molecules) labels for SVM training.
Note that during SVM training “mixed” active com-
pounds were marked as “nonclass” molecules. After
training, the nonclass compounds were sorted with
respect to the f value computed by the SVM classifier.
Molecules with higher f values are expected to be similar
to the active compounds. The parameters of SVM were
optimized to yield a maximum number of “mixed” (i.e.
reference molecules that were added to the pool of
screening compounds) active molecules within the top
0.1% of the ranked data.

Actual SVM training was performed in two steps to
reduce computing time and focus on the class/nonclass
boundary in the descriptor space: instead of using all
nonclass molecules of a training set, first an SVM was
trained with a randomly selected subset containing only
105 compounds from the nonclass set. We are well aware
that in this case the region near the active compounds
might be insufficiently sampled. We therefore employed
the “active learning” approach to focus on “relevant”
portions of descriptor space:28,29 After obtaining the first
ranked list of the compounds the SVM training proce-
dure was repeated, now with a sample set consisting of
the top-ranking 105 compounds. By this two-step train-
ing process, a more fine-tuned SVM classifier focusing
on the class/nonclass boundary was obtained. This
concept has been shown to be useful in related virtual
screening applications recently.15,20 Predictions were
made for the whole data set of ∼2.7 million molecules.
Since parts (2 × 105 compounds ) 7.4%) of the nonclass
data were used for training, the predictions do not
represent true validation results.

The two-step active learning procedure was followed
by final SVM training, which was performed with all
available actives (“class”) and all molecules with un-
known activity as “nonclass” samples. Optimized SVM
parameters were used. The resulting ranking of these
compounds by the trained SVM was used to cherry-pick
molecules for in vitro activity testing: Beginning at rank

f(x) ) ∑
i

RiK(x,xi
sv) + b, where K(x,y) )

((x‚y)s + 1)5 (1)
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1 of the final SVM-ranked list of commercially available
compounds, 13 molecules were cherry-picked. We ex-
cluded several compounds that contain certain reactive
groups and potentially insoluble molecules by visual
inspection. At this stage, only compounds available from
Specs (Delft, The Netherlands; www.specs.net) were
considered (Chart 1), since the aim of our study was not
to find as many novel COX-2 inhibitors as possible, but
to provide proof-of-principle for our approach. In this
prospective study, the complete set of ∼2.7 million
compounds with unknown activity was employed to
span a wide chemical space for SVM training.

Pharmacophore Point Visualization. Potential
pharmacophore points of the inhibitors were visualized
by highlighting atoms that contribute to the most
important features. The importance Ri of each 3PP
feature was calculated based on the change of SVM
prediction for a molecule when this feature is removed
(eq 2).

where x is a fingerprint representation of a molecule
with presence or absence of feature Fi. Each atom
contributing to feature Fi receives the weight Ri. It is
reasonable to assume that the importance of atoms in
a 3PP differs. To take this into account the importance
of every atom in the reference set of actives was
estimated (Figure 1). The individual weight w of an
atom was estimated as the average weight of all 3PP
triangles that contain this atom as a vertex. Averaging
was done twice, first over the triangles of each molecule
(Figure 1d) and finally over the whole set of actives.

Visualization contrast was enhanced by diminishing
the atom weights w in every 3PP except for the most

important one by wn. Prior to diminishing the weight
of every feature, weights were normalized, so that the
maximum w is equal to 1. We choose n ) 10 empirically,
so that the weight of the most important atom equals 1
and all other weights diminished.

Docking of COX2 Inhibitors. For docking of com-
pounds into the COX-2 active site cavity MOE software
was used. The complex of COX-2 with a selective
inhibitor SC-558 (PDB-identifier: 1CX2) served as
reference. Only one of the four identical domains of the
COX-2 complex was considered. Prior to docking hydro-
gen atoms were added to the protein complex, and its
structure was energy minimized keeping positions of all
atoms fixed except for the added hydrogen atoms.
Partial charges of the atoms were calculated using
MMFF estimation.30 Docking was performed using
MOE molecular dynamics approximation and Tabu-
search as described.31 The results were evaluated by

Chart 1. Compounds 1-13 Were Cherry-Picked from the Virtual Screening Results and Tested for COX-2 Inhibition.
Reference Compounds Diclofenac 14, Celecoxib 15, and Rofecoxib 16

Ri ) f(x(Fi ) 1)) - f(x(Fi ) 0)) (2)

Figure 1. Calculation of atom weights for feature visualiza-
tion. The two-dimensional molecular structure (a) is converted
to the hydrogen-depleted molecular graph representation (b).
Then topological 3PP triangles are assigned (the length of each
edge is calculated as the number of bonds in the molecular
graph connecting the two vertexes along the shortest path)
(c), and the importance R of each triangle is determined by eq
2. Individual atoms are weighted proportional to the sum of
the Ri values of contributing 3PP features (d).

Journal of Medicinal Chemistry, 2005, Vol. 48, No. 22 6999



comparison with the binding mode of the reference
inhibitor SC-558.

Results and Discussion
SVM Training and Feature Visualization. SVM

classifiers were trained to predict thrombin and COX-2
inhibitors. The accuracy of the predictions was assessed
by retrospective database screening. In the case of the
COX-2 classifier, 81 ( 6% of the 22 test compounds were
retrieved within the first 0.1% of the ranked database
in a 4-fold cross-validation study (a priori probability:
0.1%). The retrieval of thrombin ligands was less
accurate, yielding 55 ( 14% of the 46 test compounds
from the first 0.45% of the ranked database (a priori
probability: 0.45%). The small standard deviations in
both cases indicate robust prediction models. With
further optimization by active learning we yielded 81
( 6% of the test compounds in 0.0031% of the ranked
database for COX-2 inhibitors and 55 ( 14% of the test
compounds from the first 0.083% of the ranked database
for thrombin ligands. This difference in performance
might be explained not only by differences of the two
reference sets and SVM classifier shortcomings but also
by the structural diversity of chemotypes that are
present in the screening database.32 Overall, we con-
cluded that the two SVM classifiers might be useful for
generating focused libraries with significant enrichment
of actives compared to a random selection of compounds,
as indicated by the low a priori probabilities for finding
an active molecule among a random selection of mol-
ecules from the screening database.

To further validate the constructed SVM models we
visualized PPPs that were predicted as relevant. For
COX-2 inhibitors a well-known pharmacophoric pattern
was highlighted: a constellation of aromatic rings with
a sulfonamide group attached to one of them (Figure
2a).33 Interestingly, it has been reported that the aryl
moiety B can be replaced by alkoxy groups, still retain-
ing COX-2 potency and selectivity (for review, see ref
34). For interpretation of the SVM feature extraction
results, this should be kept in mind. For our SVM-based
PPP constellation it is important to note that for the
example of Celecoxib the oxygen atoms of the sulfona-
mide were marked as important for COX-2 inhibition
and not the amino group (Figure 2b). Sulfonyl and
sulfonamide groups are present in many specific COX-2
inhibitors.33,34 They are known to interact with Arg-513
in the hydrophilic side-pocket of the COX-2 active site.35

This confirms that the SVM was able to extract relevant

pharmacophore points from the set of all potential
pharmacophore points that are present in a molecule.
The predicted “planar hydrophobic” PPP of the pyrazole
in Celecoxib (Figure 2b) should be regarded as an
artifact arising from a bias toward diaryl heterocycles
in the training data. There are several examples of
selective COX-2 inhibitors lacking this predicted PPP,
e.g. 1,2 diaryl-stilbenes or -alkenes.34,36-39 This finding
shows that although the feature extraction and visual-
ization technique may be suited for finding relevant
features, it reflects the diversity of chemotypes provided
for SVM training. It is evident that fully generalizing
features will not be found if biased training data are
used.

In contrast to the comparably simple pharmacophore
of COX-2 inhibitors, thrombin inhibitors represent more
complex molecules, and the respective pharmacophore
contains more interaction points (Figure 3).40,41 Accord-
ing to Patel et al., the major interactions are B, H1, H2,
and H3, where B is a basic interaction which interacts
with the carboxylic group of an aspartate.42 H1, H2, and
H3 are hydrophobic interactions; less conserved interac-
tions are D1 and A1, where D1 is a hydrogen-bond donor
and A1 is a hydrogen-bond acceptor.42 Figure 4 shows
suggested thrombin pharmacophore points extracted by
the corresponding SVM classifier for one of the com-
pounds that were selected from the screening database.
We can find the basic guanidinium moiety potentially
binding to Asp189 at the bottom of the specificity pocket
P1 of thrombin.43 It is interesting to note that not all
atoms of the arginine side-chain are considered impor-
tant by SVM. This is exactly what one would expect, as
several arginine-analogues have been identified that
bind in the same or a similar mode to the P1 pocket.44

This result was probably achieved by selecting 3PP
feature triangles with amines at the vertexes and
relatively long edges which correspond to the arginine
side chain. H-Bonding to the Gly216 backbone was also
accurately predicted as one of the crucial interaction
sites (Figure 4d). The hydrophobic interactions H1, H2,
and H3 in the model of Patel et al. (Figure 3) were not
appropriately recognized by the SVM, although several
known inhibitors containing these interaction points

Figure 2. (A) Crystal structure conformation of the inhibitor
SC-558 bound to COX-2 (PDB identifier: 1DWC). According
to Palomer et al., essential interactions for specific COX-2
inhibitors are the aromatic rings A and B and the sulfonyl
group.33 (B) Potential pharmacophore points (shaded circles)
identified by SVM for the structurally similar Celecoxib 15.
The sizes of the potential pharmacophore points reflect their
relative contribution (weight) to the SVM classifier.

Figure 3. Three-dimensional alignment of thrombin inhibi-
tors based on PDB structures 1C4V, 1D4P, 1D6W, 1D9I,
1DWD, 1FPC, and 1TOM (adapted from ref 10). The molecules
were aligned by superposition of their appropriate protein
structures. Essential interaction points according to Patel et
al. are indicated. B is a basic interaction, H1, H2, and H3 are
hydrophobic interactions, A1 is a hydrogen-bond acceptor, and
D1 is a hydrogen-bond donor.
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were present in the training data. This observation
reveals a limitation of our feature extraction method.

An interesting property of the SVM model for throm-
bin is illustrated by analyzing another compound that
was predicted to be a potential thrombin inhibitor.
Structure 19 contains a pattern of potential interaction
points that might correspond to a different binding mode
than that of NAPAP-inhibitors. The binding modes of
NAPAP45 17 and argatroban46 20 are shown in Figure
5. It seems reasonable to assume that compound 19
adopts an Argatroban-like binding mode. The guani-
dinium group has the potential to form hydrogen-bonds
with Asp189; and binding to Gly216 could be similar
as for Argatroban. This assumption is supported by the
SVM model which considers essential known pharma-
cophore points as most important (Figure 5). From this
entirely theoretical consideration we concluded that
both binding patterns, Argatroban-like and NAPAP-like,
were contained in the SVM model resulting in an
interpretable prediction of functional groups that might
form key interactions with the target enzyme.

Virtual Screening for COX-2 Inhibitors. As a first
practical validation of our prediction results and the

validity of the SVM approach, we tested potential COX-2
inhibitors in an in vitro binding study. We chose this
application because the SVM model of COX-2 inhibitors
was more accurate than our thrombin classifier. Struc-
tures 1-13 were tested for COX-2 inhibition with
Diclofenac 14, Celecoxib 15, and Rofecoxib 16 as positive
references. We selected a set of compounds which
contain known motifs of COX-2 ligands and potentially
novel structural features in order to allow for “scaffold
hopping” (Chart 1). Compounds 4, 5, and 7 exhibited
an inhibitory effect in the activity assay. The most
potent compound was 5 with IC50 ) 0.2 ( 0.3 µM. For
molecule 4 we determined an IC50 of 8 ( 2 µM.
Concentrations of 4 above 20 µM resulted in an increase
of remaining enzyme activity. A similar observation was
made for 7 above 5 µM concentration with approxi-
mately 60% remaining COX-2 activity. IC50 determina-
tion was thus not achievable for 7. This observation
might be a consequence of poor solubility. IC50 values
of Diclofenac (5 ( 1 nM), Celecoxib (6 ( 3 µM), and
Rofecoxib (15 ( 3 µM) were determined in our assay to
obtain appropriate reference values. Compared to
IC50 values (Diclofenac: 26 nM, Celecoxib: 6.8 µM,

Figure 4. (a) Most important interactions between NAPAP45 17 and thrombin; (b) structure of a NAPAP-like compound 18 that
was predicted to be a potential thrombin inhibitor by the SVM classifier; (c) with all potential pharmacophore points, and (d) the
corresponding weights assigned by the SVM feature extraction procedure. The crucial pharmacophore pattern of the NAPAP-
thrombin complex was automatically identified by the feature extraction method.

Figure 5. Complex of NAPAP 17 (green; PDB identifier: 1DWD) and Argatroban 20 (magenta; PDB identifier: 1DWC) with
thrombin. Structures were superimposed according to their CR coordinates. Hydrogen bonds are drawn as dotted lines, approximate
locations of the S1, S2/3 active site pockets are indicated. Molecule 19 represents a predicted thrombin inhibitor. Pharmacophore
features are highlighted that were considered “important” by the SVM classifier. “Importance” is indicated by the size of the
circles.
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Rofecoxib: 25 µM)47 that were obtained in a study by
Kato et al. who used a similar assay system, we
observed slightly lower IC50 values for all three refer-
ence compounds, with comparable relative inhibition,
which can probably be attributed to individually differ-
ent assay conditions. Molecule 5 exhibits an inhibitory
effect on COX-2 that is even stronger than the effect of
the two coxibs. Structures 4 and 5 contain a benzimi-
dazole scaffold which, to the best of our knowledge, has
not been employed for COX inhibitor development. The
higher IC50 value of 4 might result from the methoxy
group introducing steric hindrance, as deduced from
extensive SAR studies performed for Celecoxib by Pen-
ning et al.48 The two phenyl substituents of 5 are similar
to the respective moieties of Celecoxib 15 and its potent
derivatives.48 Docking of 5 into the active site pocket of
COX-2 essentially revealed a similar potential binding
mode to SC-558,49 a selective COX-2 inhibitor gaining
selectivity over COX-1 interaction through interaction
with residues (Ile517, Phe518, Gln192, and His(90))
forming a secondary pocket that is not present in COX-1
(Figure 6).34,49 Note that due to the comparably low
resolution of 3 Å of the SC-558-COX-2 cocrystal struc-
ture, the existence of a hydrogen-bond between 5 and
His90 is speculative.

The pyrrolizine derivative 7 extends the class of
known pyrrolizine-based COX-2 inhibitors. Molecule 21
has been described as a low nanomolar COX-2 inhibitor

revealing micromolar 5-lipoxygenase (5-LO) inhibition.50

Researchers at Merckle (Germany) described a family
of 1-oxo-pyrrolizines 22 as potent COX/5-LO dual in-
hibitors.51 The altered substitution pattern of 7 may
thus be worthwhile testing for 5-LO inhibition, although
it lacks possibly essential substructure elements of
known 5-LO ligands, e.g. an aliphatic chain with a polar
headgroup like the carboxylic acid function in 22. Dual
inhibition of COX-2 and 5-LO provides a new strategy
to provide safer nonsteroidal antiinflammatory drugs,

which is of interest to avoid potential side-effects of the
coxib stuctural family.52,53

Although the benzimidazole 5 is less active than
Diclofenac, but showed to have higher potency than
Celecoxib and Rofecoxib, it might be suited for further
optimization. A promising observation is the strong
similarity between the PPP pattern of compound 5 and
the interaction patetrns described for the known COX-2
inhibitors Celecoxib 15 and Rofecoxib 16.54,55 Certainly,
selectivity for COX-2 over COX-1 inhibition should be
investigated and considered for future designs. Again,
for this task our SVM approach could be used to develop
an additional COX-1 classifier and employed for (i)
cherry-picking potential COX-2 selective inhibitors, and
(ii) identification of enzyme subtype-specific pharma-
cophore points.

Conclusions

This study demonstrated that SVM can be employed
for identification of promising screening candidates that
exhibit significant biological activity. The extracted
potential pharmacophore patterns coincided with known
binding models of thrombin and COX-2 inhibitors. The
SVM classifiers produced a quantitative ranking of
substructure elements which can guide further hit and
lead structure profiling. It was demonstrated that this
machine-learning method is suitable for virtual screen-
ing and can be analyzed in a human-interpretable way
that results in a set of rules for designing novel
molecules. The method complements the suite of model-
ing techniques that have been employed for designing
selective COX-2 inhibitors previously.56 We employed
the SVM method for our study since it offers particular
advantages over other machine-learning approaches:
13,14,18,57 (i) the SVM class/nonclass boundary is con-
structed as the maximum margin classifier, i.e., it does
not represent an arbitrary solution; (ii) it relies only on
the so-called “support-vectors”, i.e., those molecules that
define the classifier function (eq 1). This means, that
in contrast to machine-learning methods employing an
error function that is calculated from all data points
(e.g., the mean-squared-error, mse), it is less affected
by outliers and the overall shape of the data distribu-
tion; (iii) SVM training was shown to be more robust
than, for example, training of radial-basis-function and
multilayer-feedforward networks.19,57 Still, most impor-
tant to the particular task of molecular fingerprint
weighting and potential pharmacophore-point visualiza-
tion is the fact that SVM training can cope with high-
dimensional molecular descriptors.18,58 The feature-
weighting procedure used in our study could be applicable
to other “black box” prediction systems too, e.g. artificial
neural networks predicting molecular properties. It
complements similar techniques that are grounded on,
e.g., genetic algorithms or ensemble weighting.10,59 Since
SVM training was not rigorously optimized in this study
(e.g., choice of Kernel function, parameter optimization),
we think that further optimization of classification
accuracy might be possible. Together with an aug-
mented set of reference compounds that are less biased
toward individual chemotypes this will lead to further
refined pharmacophore point hypotheses.

Figure 6. Superposition of the selective COX-2 inhibitor SC-
558 (green; from PDB entry 1CX2) and molecule 5 (magenta),
which was docked into the COX-2 active site. The two
molecules have essentially the same binding conformation. A
potential hydrogen-bond between 5 and His90 is indicated by
the dotted line.
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Experimental Section

COX-2 Assay. A COX-2 inhibition assay was performed to
evaluate compound activity with Diclofenac 14, Celecoxib 15,
and Rofecoxib 16 as positive controls.52 Celecoxib 15 and
Rofecoxib 16 samples were obtained from the Department of
Clinical Pharmacology, Goethe-University of Frankfurt (Ger-
many). Diclofenac was obtained from Sigma (Deisenhofen,
Germany). The human monocytic cell line Mono Mac 6 was
differentiated with transforming growth factor beta (TGFâ, 1
ng/mL) and calcitriol (50 nM) for 96 h as described.60 Six hours
prior to harvest, lipopolysaccharide (100 ng/mL) was added
to induce COX-2 expression. Then, cells were harvested,
washed twice, resuspended in PGC buffer (phosphate buffered
saline at pH 7.4 containing 1 mg/mL glucose and 1 mM CaCl2)
(5 × 106 cells/ml), preincubated with the test compounds at
the indicated concentrations for 15 min at 37°C, and then
incubated with arachidonic acid (30 µM) for 15 min at 37 °C.
The reaction was stopped on ice for 10 min. Cells were
centrifuged (300g, 5 min, 4°C), and the amount of 6-Keto PGF1R

released was assessed by ELISA using a monoclonal antibody
against 6-keto PGF1R according to the protocol described by
Yamamoto and co-workers.61,62 For the ELISA, the monoclonal
antibody (0.2 µg/200 µl) was coated to microtiter plates via a
goat anti-mouse-IgG antibody. 6-Keto PGF1R (15 µg) was linked
to bacterial â-galactosidase (0.5 mg, Calbiochem), and the
enzyme activity bound to the antibody was determined in an
ELISA reader at OD550 nm (reference wavelength: 630 nm)
using chlorophenol-red-â-D-galactopyranoside (CPRG, Roche
Diagnostics GmbH, Germany) as substrate.

Calculation of IC50 Values. The raw ELISA readout was
calibrated using 1 pg, 100 pg, 1 ng, 5 ng, 10 ng, 100 ng, and 1
µg 6-Keto PGF1R (N ) 4). Maximal enzyme activity was
determined with 30 µM arachidonic acid. Background activity
was determined without arachidonic acid. From the ELISA
readouts the amounts of 6-Keto PGF1R product was calculated.
For IC50 value determination, 10 different concentrations of
the test compounds were used (N ) 4).
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